A Single-Cell Atlas of the Atherosclerotic Plaque in the Femoral Artery and the Heterogeneity in Macrophage Subtypes between Carotid and Femoral Atherosclerosis

Author:

Wang Ping,Zheng Lin,Qiao Maolin,Zhao Tianliang,Zhang Ruijing,Dong Honglin

Abstract

Atherosclerosis of femoral arteries can cause the insufficient blood supply to the lower limbs and lead to gangrenous ulcers and other symptoms. Atherosclerosis and inflammatory factors are significantly different from other plaques. Therefore, it is crucial to observe the cellular composition of the femoral atherosclerotic plaque and identify plaque heterogeneity in other arteries. To this end, we performed single-cell sequencing of a human femoral artery plaque. We identified 14 cell types, including endothelial cells, smooth muscle cells, monocytes, three macrophages with four different subtypes of foam cells, three T cells, natural killer cells, and B cells. We then downloaded single-cell sequencing data of carotid atherosclerosis from GEO, which were compared with the one femoral sample. We identified similar cell types, but the femoral artery had significantly more nonspecific immune cells and fewer specific immune cells than the carotid artery. We further compared the differences in the proportion of inflammatory macrophages, and resident macrophages, and the proportion of inflammatory macrophages was greater within the carotid artery. Through comparing one femoral sequencing sample with carotid samples from public datasets, our study reveals the single-cell map of the femoral artery and the heterogeneity of carotid and femoral arteries at the cellular level, laying the foundation for mechanistic and pharmacological studies of the femoral artery.

Funder

Shanxi Youth Science and Technology Research Fund

Publisher

MDPI AG

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

Reference31 articles.

1. Peripheral artery disease;Morley;BMJ,2018

2. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II);Norgren;J. Vasc. Surg.,2007

3. Small but smart: MicroRNAs orchestrate atherosclerosis development and progression;Santovito;Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids,2016

4. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis;Schober;Nat. Rev. Cardiol.,2015

5. MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation;Cai;Proc. Natl. Acad. Sci. USA,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3