Dynamic Optimization of Variable Load Process for Combined Heat and Power Unit Based on Sequential Quadratic Programming and Interior Point Method Alternating Solution Method

Author:

Huang Yuehua1,Chen Qing1,Zhang Lei1,Zhang Zihao1,Liu Xingtao1,Tu Jintong1

Affiliation:

1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China

Abstract

Aiming at the problem that the modeling and solving method of combined heat and power (CHP) unit variable load control process is challenging to meet the demand for efficient analysis of complex systems, this paper proposes a method based on sequential quadratic programming and interior point method (SQP-IPM) alternating solution for dynamic optimization of the CHP unit variable load process. Firstly, by constructing the CHP unit mechanism model, multi-variable coordination control constraints, and output variable process constraints, the dynamic optimization proposition of the CHP unit variable load control process is formed. Then, the large-scale nonlinear programming (NLP) problem formed by using the orthogonal configuration method to discrete the state and control variables is optimally solved using the IPM-SQP alternating solution method. Further, from the perspective of balancing the accuracy of the solution and computational efficiency, the flexible convergence depth control (CDC) strategy is introduced into the alternative solution method to improve the real-time performance of the algorithm. Finally, the variable load control process of 300MW extraction CHP unit is simulated to verify that the proposed method reduces the calculation time for 12 consecutive variable load scenarios by about 70%, effectively improving the real-time performance of scenario applications.

Funder

National Natural Science Foundation of China

Research Fund for Excellent Dissertation of China Three Gorges University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3