A Possible Explicit Equation Fitting Method for the Gaseous Heat Capacity Near the Critical Point Based on Density and Temperature

Author:

Li Mukun1,Wang Gang1,Sun Lulu1,Cao Xiaoqiang1,Ni Hongjian2

Affiliation:

1. College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

CO2 is a potential fluid for absorbing and accumulating thermal energy; an accurate and fast calculation method for the heat capacity is essential for the study of the flow state near the critical point. However, the calculation of the heat capacity near the critical point by the equations suggested by NIST can easily be divergent, such as for CO2, nitrogen, methane, etc. Therefore, an explicit fitting equation was studied. The fitting equation, which used density and temperature as variables and contained three constants, was derived from the nature of heat capacity change (molecular kinetic energy and potential energy). Based on the heat capacity data of the NIST WebBook, the heat capacity of CO2 is taken as the example for the equation deduction and parameter fitting. The three constants were defined in order by Origin fitting software. By this new approach, it is found that the heat capacity at the critical point is below 1% deviant from that of the NIST WebBook. Moreover, the heat capacities that are difficult to be calculated in the NIST WebBook are well calculated. The study shows that the fitting equation is efficient for the prediction of heat capacity of gases near the critical point.

Funder

Shandong Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular CO2 Storage: State of a Single-Molecule Gas;ACS Physical Chemistry Au;2024-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3