Artificial Neural Network Model for Temperature Prediction and Regulation during Molten Steel Transportation Process

Author:

Fang Linfang1,Su Fuyong1ORCID,Kang Zhen1,Zhu Haojun1

Affiliation:

1. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

With the continuous optimization of the steel production process and the increasing emergence of smelting methods, it has become difficult to monitor and control the production process using the traditional steel management model. The regulation of steel smelting processes by means of machine learning has become a hot research topic in recent years. In this study, through the data mining and correlation analysis of the main equipment and processes involved in steel transfer, a network algorithm was optimized to solve the problems of standard back propagation (BP) networks, and a steel temperature forecasting model based on improved back propagation (BP) neural networks was established for basic oxygen furnace (BOF) steelmaking, ladle furnace (LF) refining, and Ruhrstahl–Heraeus (RH) refining. The main factors influencing steel temperature were selected through theoretical analysis and heat balance principles; the production data were analyzed; and the neural network was trained and tested using large amounts of field data to predict the end-point steel temperature of basic oxygen furnace (BOF) steelmaking, ladle furnace (LF) refining, and Ruhrstahl–Heraeus (RH) refining. The prediction model was applied to predict the degree of influence of different operating parameters on steel temperature. A comparison of the prediction results with the production data shows that the prediction system has good prediction accuracy, with a hit rate of over 90% for steel temperature deviations within 20 °C. Compared with the traditional steel temperature management model, the prediction system in this paper has higher management efficiency and a faster response time and is more practical and generalizable in the thermal management of steel.

Funder

Key Technologies for System Energy Conservation and Emission Reduction in Metallurgy, Chemical Furnaces

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3