Novel Stimulants of Medicinal Basidiomycetes Growth Based on Nanoparticles of N-monosubstituted Amino Acid Derivatives of Fullerene C60

Author:

Voronkov Mikhail1,Tsivileva Olga2ORCID,Volkov Vladimir1,Romanova Valentina3,Misin Vyacheslav1

Affiliation:

1. N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia

2. Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia

3. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia

Abstract

The influence of nanoparticles of hydrated C60 fullerene and its N-monoamino acid derivatives on the oxidative metabolism and growth of the mycelial biomass of basidiomycetes during their submerged cultivation was studied. It was found that the supplementation of culture media with nanoparticles of the studied compounds at their final concentration range of 10−7 to 10−11 M significantly increased the resulting biomass, while the severity of the effect in this concentration range changed slightly. That prompted the use of nanomolar concentrations of compounds as reasonable. The most pronounced stimulating effect (an increase in biomass of about 240% with respect to control) was observed when culturing Laetiporus sulphureus, the intrinsically high level of oxidative metabolism of which was significantly lowered by the presence of the studied additives. It was shown that the growth-enhancing action of nanoparticles of fullerene C60 and its derivatives could not be attributed to photochemical reactions, particularly fullerene photoexcitation. Fullerene and its derivatives manifest a growth regulatory effect on bio-objects from different kingdoms of the living world (plants and fungi), which is indicative of these compounds’ mechanism of action based on a direct impact on fundamental, universal for all living beings, biophysical processes, primarily chain free-radical oxidation.

Funder

inistry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3