A Multi-Stage Decision Framework for Optimal Energy Efficiency Measures of Educational Buildings: A Case Study of Chongqing

Author:

Cui Wenjing1,Hong Jingke2,Liu Guiwen2,Zhang Lin1ORCID,Wei Lizhen3

Affiliation:

1. School of Management Engineering, Shandong Jianzhu University, Jinan 250101, China

2. School of Management Science and Real Estate, Chongqing University, Chongqing 400044, China

3. College of Civil Engineering, Huaqiao University, Xiamen 361021, China

Abstract

Buildings consume large amounts of energy resources and emit considerable amounts of greenhouse gases, especially existing buildings that do not meet energy standards. Building retrofitting is considered one of the most promising and significant solutions to reduce energy consumption and greenhouse gas emissions. However, finding suitable energy efficiency measures for existing buildings is extremely difficult due to the existence of thousands of retrofit measures and the need to meet various objectives. In this paper, a multi-stage decision framework, including a multi-objective optimization model, and a ranking method are proposed to help decision-makers select the optimal energy efficiency measures. The multi-objective optimization model considers the economic and environmental objectives, expressed as the retrofit cost and energy consumption, respectively. The entropy weight ideal point ranking method, an evaluation and ranking method that combines the entropy weight method and ideal point method, is adopted to sort the Pareto front and make a final decision. Then, the proposed decision framework was implemented for the retrofit planning of an educational building in Chongqing, China. The results show that decision-makers can quickly identify near-optimal energy efficiency measures through multi-objective optimization and can select suitable energy efficiency measures using the ranking method. Moreover, energy consumption can be reduced by building retrofitting. The energy consumption of the case building was 64.20 kWh/m2 before retrofitting, and the value can be reduced by 6.79% through retrofitting. Furthermore, the reduction in building energy consumption was significantly improved by applying the decision framework. The highest value of energy consumption was 59.84 kWh/m2, while the lowest value was 27.11 kWh/m2 when implementing the multi-stage decision framework. Thus, this paper provides a useful decision framework for decision-makers to formulate suitable energy efficiency measures.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3