MOVING: A Multi-Modal Dataset of EEG Signals and Virtual Glove Hand Tracking

Author:

Mattei Enrico12ORCID,Lozzi Daniele12ORCID,Di Matteo Alessandro12ORCID,Cipriani Alessia13ORCID,Manes Costanzo2ORCID,Placidi Giuseppe1ORCID

Affiliation:

1. A2VI-Lab, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy

2. Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, 67100 L’Aquila, Italy

3. Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy

Abstract

Brain–computer interfaces (BCIs) are pivotal in translating neural activities into control commands for external assistive devices. Non-invasive techniques like electroencephalography (EEG) offer a balance of sensitivity and spatial-temporal resolution for capturing brain signals associated with motor activities. This work introduces MOVING, a Multi-Modal dataset of EEG signals and Virtual Glove Hand Tracking. This dataset comprises neural EEG signals and kinematic data associated with three hand movements—open/close, finger tapping, and wrist rotation—along with a rest period. The dataset, obtained from 11 subjects using a 32-channel dry wireless EEG system, also includes synchronized kinematic data captured by a Virtual Glove (VG) system equipped with two orthogonal Leap Motion Controllers. The use of these two devices allows for fast assembly (∼1 min), although introducing more noise than the gold standard devices for data acquisition. The study investigates which frequency bands in EEG signals are the most informative for motor task classification and the impact of baseline reduction on gesture recognition. Deep learning techniques, particularly EEGnetV4, are applied to analyze and classify movements based on the EEG data. This dataset aims to facilitate advances in BCI research and in the development of assistive devices for people with impaired hand mobility. This study contributes to the repository of EEG datasets, which is continuously increasing with data from other subjects, which is hoped to serve as benchmarks for new BCI approaches and applications.

Funder

European Union—NextGenerationEU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3