K2O-Metakaolin-Based Geopolymer Foams: Production, Porosity Characterization and Permeability Test

Author:

Papa ElettraORCID,Landi ElenaORCID,Miccio FrancescoORCID,Medri ValentinaORCID

Abstract

In this paper, four near-net shaped foams were produced via direct foaming, starting from a benchmark metakaolin-based geopolymer formulation. Hydrogen peroxide and metallic silicon were used in different amounts as blowing agents to change the porosity from meso- to ultra-macro-porosity. Foams were characterized by bulk densities ranging from 0.34 to 0.66 g cm−3, total porosity from 70% to 84%, accessible porosity from 41% to 52% and specific surface area from 47 to 94 m2 g−1. Gas permeability tests were performed, showing a correlation between the pore features and the processing methods applied. The permeability coefficients k1 (Darcian) and k2 (non-Darcian), calculated applying Forchheimer’s equation, were higher by a few orders of magnitude for the foams made using H2O2 than those made with metallic silicon, highlighting the differing flow resistance according to the interconnected porosity. The gas permeability data indicated that the different geopolymer foams, obtained via direct foaming, performed similarly to other porous materials such as granular beds, fibrous filters and gel-cast foams, indicating the possibility of their use in a broad spectrum of applications.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3