Development of the Platform for Three-Dimensional Simulation of Additive Layer Manufacturing Processes Characterized by Changes in State of Matter: Melting-Solidification

Author:

Svyetlichnyy Dmytro S.ORCID

Abstract

A new platform for three-dimensional simulation of Additive Layer Manufacturing (ALM) processes is presented in the paper. The platform is based on homogeneous methods—the Lattice Boltzmann Method (LBM) with elements of Cellular Automata (CA). The platform represents a new computer-based engineering technique primarily focused on Selective Laser Melting (SLM) technology. Innovative computational strategies and numerical algorithms for simulation and analysis of entire powder bed-based technology with changes in state of matter (melting-solidification) are presented in the paper. The models deal mainly with heat transfer, melting and solidification, and free-surface flow. Linking LBM and CA into a complex holistic model allows for complete full-scale simulations avoiding complicated interfaces. The approach is generic and can be applied to different multi-material powder bed-based SLM processes. A methodology for the adaptation of the model to the real material (Ti-6Al-4V alloy) and processing parameters is presented. The paper presents the first quantitative results obtained on the platform and shows the ability of the model to simulate and analyze a very complex technology, entirely without a complicated interface between the sub-models. It solves the large-scale problem connected with computer-aided design and analysis of new multi-passes and multi-materials processes.

Funder

National Science Center

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3