Abstract
Regarding crashworthiness, many published works have focused on designing thin-walled structures for frontal collisions compared to side-impact collisions. This paper presents an experimental investigation and finite element modelling of a carbon-reinforced thin-walled top-hat section subjected to quasi-static and dynamic transverse bending loads at different impact speeds. The top-hat sections and their closure assembly plates were made of MTM44 prepreg carbon. The specimens were manufactured by vacuum bagging. Dynamic work was performed to validate the results obtained from the finite element analysis (FEA). The predicted results are in good agreement with the experimental results. The study also showed that the peak load and energy absorption owing to dynamic loading were higher than those under static loading. In the four-point bend analysis, the stacking sequence affected the energy absorption capabilities by 15–30%. In addition, the distance between the indenters in the four-point analysis also affected the energy absorption by 10% for the same impact condition, where a larger distance promoted higher energy absorption. The study also demonstrated that a top-hat shaped thin-walled structure is suitable for deep intrusion beams in vehicle doors for side-impact crashworthiness applications.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献