Author:
Luo Zixiang,Liu Ke,Cui Zizhen,Ouyang Xuemei,Zhang Chen,Yin Fucheng
Abstract
The microstructure, interfacial characteristics, and corrosion resistance of Fe-W-Mn-Al-B alloys in molten zinc at 520 °C have been investigated using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and electron probe micro-analysis (EPMA). The experimental results indicate that the Fe-B alloy with 11 wt.% W, 7 wt.% Mn, and 4 wt.% Al addition displays a lamellar eutectic microstructure and excellent corrosion resistance to molten zinc. The toughness of M2B-type borides in the hyper-eutectic Fe-4.2B-11W-7Mn-4Al alloy can be more than doubled, reaching 10.5 MPa·m1/2, by adding Mn and Al. The corrosion layer of the Fe-3.5B-11W-7Mn-4Al alloy immersed in molten zinc at 520 °C comprises Fe3AlZnx, δ-FeZn10, ζ-FeZn13, and η-Zn. The lamellar borides provide the mechanical protection for α-(Fe, Mn, Al), and the thermal stability of borides improves as the fracture toughness of the borides increases, which jointly contribute to the improvement of the corrosion resistance to the molten zinc.
Funder
National Science Foundation of the China
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献