Wood Properties Characterisation of Thermo-Hydro Mechanical Treated Plantation and Native Tasmanian Timber Species

Author:

Balasso MichelleORCID,Kutnar Andreja,Niemelä Eva PrelovšekORCID,Mikuljan Marica,Nolan Gregory,Kotlarewski NathanORCID,Hunt Mark,Jacobs Andrew,O’Reilly-Wapstra Julianne

Abstract

Thermo-hydro mechanical (THM) treatments and thermo-treatments are used to improve the properties of wood species and enhance their uses without the application of chemicals. This work investigates and compares the effects of THM treatments on three timber species from Tasmania, Australia; plantation fibre-grown shining gum (Eucalyptus nitens H. Deane and Maiden), plantation saw-log radiata pine (Pinus radiata D. Don) and native-grown saw-log timber of the common name Tasmanian oak (which can be any of E. regnans F. Muell, E. obliqua L’Hér and E. delegatensis L’Hér). Thin lamellae were compressed by means of THM treatment from 8 mm to a target final thickness of 5 mm to investigate the suitability for using THM-treated lamellas in engineered wood products. The springback, mass loss, set-recovery after soaking, dimensional changes, mechanical properties, and Brinell hardness were used to evaluate the effects of the treatment on the properties of the species. The results show a marked increase in density for all three species, with the largest increase presented by E. nitens (+53%) and the smallest by Tasmanian oak (+41%). E. nitens displayed improvements both in stiffness and strength, while stiffness decreased in P. radiata samples and strength in Tasmanian oak samples. E. nitens also displayed the largest improvement in hardness (+94%) with respect to untreated samples. P. radiata presented the largest springback whilst having the least mass loss. E. nitens and Tasmanian oak showed similar dimensional changes, whilst P. radiata timber had the largest thickness swelling and set-recovery due to the high water absorption (99%). This study reported the effects of THM treatments in less-known and commercially important timber species, demonstrating that the wood properties of a fibre-grown timber can be improved through the treatments, potentially increasing the utilisation of E. nitens for structural and higher quality timber applications.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3