Nightly Automobile Claims Prediction from Telematics-Derived Features: A Multilevel Approach

Author:

Williams Allen R.,Jin Yoolim,Duer Anthony,Alhani Tuka,Ghassemi Mohammad

Abstract

In recent years it has become possible to collect GPS data from drivers and to incorporate these data into automobile insurance pricing for the driver. These data are continuously collected and processed nightly into metadata consisting of mileage and time summaries of each discrete trip taken, and a set of behavioral scores describing attributes of the trip (e.g, driver fatigue or driver distraction), so we examine whether it can be used to identify periods of increased risk by successfully classifying trips that occur immediately before a trip in which there was an incident leading to a claim for that driver. Identification of periods of increased risk for a driver is valuable because it creates an opportunity for intervention and, potentially, avoidance of a claim. We examine metadata for each trip a driver takes and train a classifier to predict whether the following trip is one in which a claim occurs for that driver. By achieving an area under the receiver–operator characteristic above 0.6, we show that it is possible to predict claims in advance. Additionally, we compare the predictive power, as measured by the area under the receiver–operator characteristic of XGBoost classifiers trained to predict whether a driver will have a claim using exposure features such as driven miles, and those trained using behavioral features such as a computed speed score.

Publisher

MDPI AG

Subject

Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting

Reference31 articles.

1. A proposed model to predict auto insurance claims using machine learning techniques;Abdelhadi;Journal of Theoretical and Applied Information Technology,2020

2. Using mobile platform to detect and alerts driver fatigue;Abulkhair;International Journal of Computer Applications,2015

3. Motor Insurance Claim Status Prediction using Machine Learning Techniques

4. A survey on driving behavior analysis in usage based insurance using big data

5. Insurance claim classification: A new genetic programming approach;Bahiraie;Advances in Mathematical Finance and Applications,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3