Abstract
While both zero-inflation and the unobserved heterogeneity in risks are prevalent issues in modeling insurance claim counts, determination of Bayesian credibility premium of the claim counts with these features are often demanding due to high computational costs associated with a use of MCMC. This article explores a way to approximate credibility premium for claims frequency that follows a zero-inflated Poisson distribution via variational Bayes approach. Unlike many existing industry benchmarks, the proposed method enables insurance companies to capture both zero-inflation and unobserved heterogeneity of policyholders simultaneously with modest computation costs. A simulation study and an empirical analysis using the LGPIF dataset were conducted and it turned out that the proposed method outperforms many industry benchmarks in terms of prediction performances and computation time. Such results support the applicability of the proposed method in the posterior ratemaking practices.
Subject
Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献