Abstract
Forecasting the creditworthiness of customers is a central issue of banking activity. This task requires the analysis of large datasets with many variables, for which machine learning algorithms and feature selection techniques are a crucial tool. Moreover, the percentages of “good” and “bad” customers are typically imbalanced such that over- and undersampling techniques should be employed. In the literature, most investigations tackle these three issues individually. Since there is little evidence about their joint performance, in this paper, we try to fill this gap. We use five machine learning classifiers, and each of them is combined with different feature selection techniques and various data-balancing approaches. According to the empirical analysis of a retail credit bank dataset, we find that the best combination is given by random forests, random forest recursive feature elimination and random oversampling.
Subject
Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献