Abstract
The risk-based capital (RBC) ratio, an insurance company’s financial soundness system, evaluates the capital adequacy needed to withstand unexpected losses. Therefore, continuous institutional improvement has been made to monitor the financial solvency of companies and protect consumers’ rights, and improvement of solvency systems has been researched. The primary purpose of this study is to find a set of important predictors to estimate the RBC ratio of life insurance companies in a large number of variables (1891), which includes crucial finance and management indices collected from all Korean insurers quarterly under regulation for transparent management information. This study employs a combination of Machine learning techniques: Random Forest algorithms and the Bayesian Regulatory Neural Network (BRNN). The combination of Random Forest algorithms and BRNN predicts the next period’s RBC ratio better than the conventional statistical method, which uses ordinary least-squares regression (OLS). As a result of the findings from Machine learning techniques, a set of important predictors is found within three categories: liabilities and expenses, other financial predictors, and predictors from business performance. The dataset of 23 companies with 1891 variables was used in this study from March 2008 to December 2018 with quarterly updates for each year.
Subject
Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting
Reference59 articles.
1. Principles of Forecasting: A Handbook for Researchers and Practitioners (International Series in Operations Research & Management Science);Armstrong,2001
2. Machine learning models and bankruptcy prediction
3. Does machine learning help us predict banking crises?
4. Analysis of Random Forest model;Biau;Journal of Machine Learning Research,2012
5. Adaptive processes to exploit the nonlinear structure of financial markets;Bosarge,1993
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献