Research on Robot Grasping Based on Deep Learning for Real-Life Scenarios

Author:

Hu Jie1ORCID,Li Qin1,Bai Qiang2

Affiliation:

1. College of Big Data Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China

2. School of Mechanical Engineering, Guiyang University, Guiyang 550002, China

Abstract

The application of robots, especially robotic arms, has been primarily focused on the industrial sector due to their relatively low level of intelligence. However, the rapid development of deep learning has provided a powerful tool for conducting research on highly intelligent robots, thereby offering tremendous potential for the application of robotic arms in daily life scenarios. This paper investigates multi-object grasping in real-life scenarios. We first analyzed and improved the structural advantages and disadvantages of convolutional neural networks and residual networks from a theoretical perspective. We then constructed a hybrid grasping strategy prediction model, combining both networks for predicting multi-object grasping strategies. Finally, we deployed the trained model in the robot control system to validate its performance. The results demonstrate that both the model prediction accuracy and the success rate of robot grasping achieved by this study are leading in terms of performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3