Modeling and Experimental Verification of Time-Controlled Grinding Removal Function for Optical Components

Author:

Chen Fulei123ORCID,Peng Xiaoqiang123,Sun Zizhou123,Hu Hao123,Dai Yifan123,Lai Tao123

Affiliation:

1. College of Intelligent Science and Technology, National University of Defense Technology, Changsha 410073, China

2. Hunan Key Laboratory of Ultra-Precision Machining Technology, Changsha 410073, China

3. Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China

Abstract

As a flexible grinding method with high efficiency, abrasive belt grinding has been widely used in the machining of mechanical parts. However, abrasive belt grinding has not been well applied in the field of ultra-precision optical processing, due to the lack of a stable and controllable removal function. In this paper, based on the idea of deterministic machining, the time-controlled grinding (TCG) method based on the abrasive belt as a machining tool was applied to the deterministic machining of optical components. Firstly, based on the Preston equation, a theoretical model of the TCG removal function was established. Secondly, removal function experiments were carried out to verify the validity and robustness of the theoretical removal model. Further, theoretical and actual shaping experiments were carried out on 200 mm × 200 mm flat glass-ceramic. The results show that the surface shape error converged from 6.497 μm PV and 1.318 μm RMS to 5.397 μm PV and 1.115 μm RMS. The theoretical and experimental results are consistent. In addition, the surface roughness improved from 271 to 143 nm Ra. The results validate the concept that the removal function model established in this paper can guide the actual shaping experiments of TCG, which is expected to be applied to the deterministic machining of large-diameter optical components.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3