Study of the High-Efficiency Ejecting-Explosion EDM of SiCp/Al Composite

Author:

Liu Yu1ORCID,Qu Jiawei1,Zhao Keguang2,Zhang Xuanyuan1,Zhang Shengfang1

Affiliation:

1. School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China

2. Huazhong Institute of Electro-Optics, Wuhan 430233, China

Abstract

SiCp/Al composites have excellent physical properties and are widely used in aerospace and other fields. Because of their poor machinability, they are often machined by non-traditional machining methods such as electrical discharge machining (EDM). In the process of EDM, due to the “shielding” effect of the reinforced particles of SiC, the local ejection force is low during the processing process, and it is difficult to throw the reinforced particles smoothly, which ultimately leads to a low material removal rate and poor surface quality. In this paper, a high–low-voltage composite ejecting-explosion EDM power supply is developed to explore the explosive effect of reinforced particles in the ejecting-explosion EDM process and the unique process law of the explosion process. The experiment platform uses self-developed CNC machining machine tools based on an ejecting-explosive EDM power supply, and the influence of a detonation-increasing wave on the processing of SiCp/Al composites with different volume fractions was studied by changing four factors: the open-circuit voltage difference, pulse current difference, pulse phase difference, and pulse width difference of the back wave behind the step front. The material removal rate and surface roughness were measured. The research results showed that the material removal rate could be increased to 164.63%, and the material surface roughness could be increased to 30.03% by adjusting the high and low pulse current difference from 1 A to 8 A. When the voltage difference between high and low wave (HLW) pulses increases from 40 V to 120 V, the material removal rate can be increased to 150.39%, and the material surface roughness can be increased to 20.49%. The material removal rate increases with the increase in pulse phase difference and open-circuit voltage difference. With the increase in peak current difference and pulse width difference, the material removal rate becomes faster at first and then slower. The surface roughness of materials increases with the growth of open-circuit voltage difference, peak current difference, pulse width difference, and pulse phase difference.

Funder

National Natural Science Foundation of China

the General Program of Natural Science Foundation of Liaoning Province

Liaoning BaiQianWan Talents Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3