FEM Analysis of Buckled Dielectric Thin-Film Packaging Based on 3D Direct Numerical Simulation

Author:

Seok Seonho1ORCID

Affiliation:

1. Center for Nanoscience and Nanotechnology (C2N), University-Paris-Saclay, 91400 Palaiseau, France

Abstract

This paper presents a 3D direct numerical simulation of buckled thin-film packaging based on transferred elastic thin-film wrinkling bonded on a compliant polymer ring. The mode change of the fabricated thin-film cap is found by measuring the thin-film cap shape at different times after Si substrate debonding. The conventional linear and nonlinear buckling simulations are not adequate to understand the behavior of the thin-film buckling mechanism creating such packaging cap mode change. Direct buckling simulation is recently reported as an easy and useful numerical wrinkling simulation method. A novel 3D FEM model of a thin-film package suitable for direct 3D buckling simulation is built to reduce the mode mixture between different buckling modes. Buckling modes of the packaging cap are investigated in terms of elastic moduli of package materials and applied strain due to thermal expansion coefficient difference. Based on the simulation results, it is found that there are two main modes in the fabricated thin-film buckling package determining the shape of the transferred thin-film packaging cover depending on the elasticity ratio between the cap and sealing ring materials. The mode shift from wrinkling cap mode to out-of-plane cap mode due to applied strain along a polymeric sealing ring is found.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3