Hydrothermal Synthesis of Molybdenum Disulfide Quantum Dots for Highly Sensitive Detection of Iron Ions in Protein Succinate Oral Solution

Author:

Lang Yan1,Xu Shuru2,Zhang Chunbin2

Affiliation:

1. Department of Rehabilitation Therapy, Wuyi University, Nanping 354301, China

2. Department of Medical Technology, Zhangzhou Health Vocational College/Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou 363000, China

Abstract

In this paper, a molybdenum disulfide fluorescent probe with an Fe3+ fluorescent system was first synthesized by the hydrothermal method for the detection of iron ion concentration in oral solution of protein succinate. It was characterized by infrared, fluorescence, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The probes were found to have good stability, photobleaching, and storage stability. The effects of dilution, pH, reaction time, and iron ion concentration on the fluorescent system were also investigated. The relative fluorescence intensity [(I0 − I)/I0] showed a good linear relationship with the iron ion concentration in the range of 0–50 μM, with the linear equation [(I0 − I)/I0] = 0.0148[Fe3+] + 0.0833 (r2 = 0.9943, n = 11) and the detection limit of 2.43 μM. The reaction mechanism was also explored, as well as its ion selectivity, reversibility, accuracy, precision, and concentration of Fe ions in the actual sample. It was found that the probe can selectively detect Fe ions with a certain degree of reversibility, accuracy, precision, and ideal recovery, and it can be used for the determination of Fe3+ in proteosuccinic acid oral solution.

Funder

Wuyi University

Innovation and Entrepreneurship Training Program for College students in Fujian Province

Fujian Natural Science Foundation

Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China

Ministry of Education

Science and Technology Innovation Team

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3