Diagnosis of Prostate Cancer through the Multi-Ligand Binding of Prostate-Derived Extracellular Vesicles and miRNA Analysis

Author:

Zabegina Lidia1ORCID,Zyatchin Ilya2,Kniazeva Margarita1,Shalaev Andrey1,Berkut Maria3,Sharoyko Vladimir4ORCID,Mikhailovskii Vladimir5,Kondratov Kirill6ORCID,Reva Sergey23,Nosov Alexandr3,Malek Anastasia17ORCID

Affiliation:

1. Subcellular Technology Lab, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia

2. Department of Oncology No. 6, Pavlov First Medical State University, 197022 Saint-Petersburg, Russia

3. Surgical Department of Oncourology, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia

4. Department of General and Bioorganic Chemistry, Pavlov First Medical State University, 197022 Saint-Petersburg, Russia

5. Interdisciplinary Resource Center for Nanotechnology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia

6. Translational Medicine Laboratory, City Hospital No. 40, 197706 Saint-Petersburg, Russia

7. Oncosystem Ltd., 121205 Moscow, Russia

Abstract

Background: The development of new non-invasive markers for prostate cancer (PC) diagnosis, prognosis, and management is an important issue that needs to be addressed to decrease PC mortality. Small extracellular vesicles (SEVs) secreted by prostate gland or prostate cancer cells into the plasma are considered next-generation diagnostic tools because their chemical composition might reflect the PC development. The population of plasma vesicles is extremely heterogeneous. The study aimed to explore a new approach for prostate-derived SEV isolation followed by vesicular miRNA analysis. Methods: We used superparamagnetic particles functionalized by five types of DNA-aptamers binding the surface markers of prostate cells. Specificity of binding was assayed by AuNP-aptasensor. Prostate-derived SEVs were isolated from the plasma of 36 PC patients and 18 healthy donors and used for the assessment of twelve PC-associated miRNAs. The amplification ratio (amp-ratio) value was obtained for all pairs of miRNAs, and the diagnostic significance of these parameters was evaluated. Results: The multi-ligand binding approach doubled the efficiency of prostate-derived SEVs’ isolation and made it possible to purify a sufficient amount of vesicular RNA. The neighbor clusterization, using three pairs of microRNAs (miR-205/miR-375, miR-26b/miR375, and miR-20a/miR-375), allowed us to distinguish PC patients and donors with sensitivity—94%, specificity—76%, and accuracy—87%. Moreover, the amp-ratios of other miRNAs pairs reflected such parameters as plasma PSA level, prostate volume, and Gleason score of PC. Conclusions: Multi-ligand isolation of prostate-derived vesicles followed by vesicular miRNA analysis is a promising method for PC diagnosis and monitoring.

Funder

Ministry of Health of the Russian Federation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3