Celecoxib, a Non-Steroidal Anti-Inflammatory Drug, Exerts a Toxic Effect on Human Melanoma Cells Grown as 2D and 3D Cell Cultures

Author:

Venuta Alessandro1,Nasso Rosarita2,Gisonna Armando3,Iuliano Roberta3,Montesarchio Sara3,Acampora Vittoria1,Sepe Leandra3ORCID,Avagliano Angelica1,Arcone Rosaria2,Arcucci Alessandro1,Ruocco Maria Rosaria3

Affiliation:

1. Department of Public Health, University of Naples Federico II, 80131 Naples, Italy

2. Department of Movement Sciences and Wellness, University of Naples “Parthenope”, 80133 Naples, Italy

3. Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy

Abstract

Cutaneous melanoma (CM) remains one of the leading causes of tumor mortality due to its high metastatic spread. CM growth is influenced by inflammation regulated by prostaglandins (PGs) whose synthesis is catalyzed by cyclooxygenases (COXs). COX inhibitors, including non-steroidal anti-inflammatory drugs (NSAIDs), can inhibit tumor development and growth. In particular, in vitro experiments have shown that celecoxib, a NSAID, inhibits the growth of some tumor cell lines. However, two-dimensional (2D) cell cultures, used in traditional in vitro anticancer assays, often show poor efficacy due to a lack of an in vivo like cellular environment. Three-dimensional (3D) cell cultures, such as spheroids, are better models because they can mimic the common features displayed by human solid tumors. Hence, in this study, we evaluated the anti-neoplastic potential of celecoxib, in both 2D and 3D cell cultures of A2058 and SAN melanoma cell lines. In particular, celecoxib reduced the cell viability and migratory capability and triggered the apoptosis of melanoma cells grown as 2D cultures. When celecoxib was tested on 3D melanoma cell cultures, the drug exerted an inhibitory effect on cell outgrowth from spheroids and reduced the invasiveness of melanoma cell spheroids into the hydrogel matrix. This work suggests that celecoxib could represent a new potential therapeutic approach in melanoma therapy.

Funder

Regione Campania “SATIN”

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3