WNT16 Regulation of the Articular Chondrocyte Phenotype in Mice

Author:

Mohan Subburaman123ORCID,Pourteymoor Shelia1,Kesavan Chandrasekhar12

Affiliation:

1. Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA

2. Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA

3. Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA

Abstract

The anabolic effects of WNT16 on osteoblasts are well established, however, little is known regarding the role of WNT16 in chondrocytes. In this study, we evaluated Wnt16 expression and its biological effects on mouse articular chondrocytes (ACs), since these cells are key to the development of osteoarthritis. While ACs derived from the long bone epiphysis of 7-day old C57BL/6J mice express multiple Wnts, Wnt5b and Wnt16 represent the two most highly expressed Wnts (expressed at several-fold higher levels than other Wnts). Treatment of serum-free AC cultures, with 100 ng/mL of recombinant human (rh) WNT16 for 24 h (hrs), increased proliferation (20%, p < 0.05) and expression levels of makers (Sox9 and Col2) of immature chondrocytes at both 24 h and 72 h, while Acan increased at 72 h. Expression of Mmp9, a marker of mature chondrocytes was decreased at 24 h. Additionally, WNT16 treatment regulated expression levels of Wnt ligands in a biphasic manner, inhibiting its expression at 24 h, while stimulating expression at 72 h. To determine whether WNT16 exerted anabolic effects on the AC phenotype, ex vivo cultures of tibial epiphyses were treated with rhWNT16 or vehicle for 9 days, and the articular cartilage phenotype was evaluated by safranin O cartilage staining and expression of articular cartilage marker genes. Both articular cartilage area and expression levels of AC markers were increased after rhWNT16 treatment. Our data suggest that Wnt16 expressed in ACs may play a role in regulating joint cartilage homeostasis via its direct effect, as well as through modulating the expression of other Wnt ligands.

Funder

Veteran’s Administration

National Institutes of Arthritis and Musculoskeletal and Skin Diseases

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3