Identification of BACE-1 Inhibitors against Alzheimer’s Disease through E-Pharmacophore-Based Virtual Screening and Molecular Dynamics Simulation Studies: An Insilco Approach

Author:

Chidambaram Kumarappan1ORCID

Affiliation:

1. Department of Pharmacology and Toxicology, College of Pharmacy, Al-Qara Campus, King Khalid University, Asir Province, Abha 61421, Saudi Arabia

Abstract

Alzheimer is a severe memory and cognitive impairment neurodegenerative disease that is the most common cause of dementia worldwide and characterized by the pathological accumulation of tau protein and amyloid-beta peptides. In this study, we have developed E-pharmacophore modeling to screen the eMolecules database with the help of a reported co-crystal structure bound with Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE-1). Flumemetamol, florbetaben, and florbetapir are currently approved drugs for use in the clinical diagnosis of Alzheimer’s disease. Despite the benefits of commercially approved drugs, there is still a need for novel diagnostic agents with enhanced physicochemical and pharmacokinetic properties compared to those currently used in clinical practice and research. In the E-pharmacophore modeling results, it is revealed that two aromatic rings (R19, R20), one donor (D12), and one acceptor (A8) are obtained, and also that similar pharmacophoric features of compounds are identified from pharmacophore-based virtual screening. The identified screened hits were filtered for further analyses using structure-based virtual screening and MM/GBSA. From the analyses, top hits such as ZINC39592220 and en1003sfl.46293 are selected based on their top docking scores (−8.182 and −7.184 Kcal/mol, respectively) and binding free energy (−58.803 and −56.951 Kcal/mol, respectively). Furthermore, a molecular dynamics simulation and MMPBSA study were performed, which revealed admirable stability and good binding free energy throughout the simulation period. Moreover, Qikprop results revealed that the selected, screened hits have good drug-likeness and pharmacokinetic properties. The screened hits ZINC39592220 and en1003sfl.46293 could be used to develop drug molecules against Alzheimer’s disease.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3