Morphology of Penicillium rubens Biofilms Formed in Space

Author:

Hupka Megan1,Kedia Raj2,Schauer Rylee3,Shepard Brooke1,Granados-Presa María4ORCID,Vande Hei Mark5,Flores Pamela13ORCID,Zea Luis3ORCID

Affiliation:

1. Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA

2. Smead Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO 80309, USA

3. BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO 80309, USA

4. Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala

5. Johnson Space Center, NASA, Houston, TX 77058, USA

Abstract

Fungi biofilms have been found growing on spacecraft surfaces such as windows, piping, cables, etc. The contamination of these surfaces with fungi, although undesirable, is highly difficult to avoid. While several biofilm forming species, including Penicillium rubens, have been identified in spacecraft, the effect of microgravity on fungal biofilm formation is unknown. This study sent seven material surfaces (Stainless Steel 316, Aluminum Alloy, Titanium Alloy, Carbon Fiber, Quartz, Silicone, and Nanograss) inoculated with spores of P. rubens to the International Space Station and allowed biofilms to form for 10, 15, and 20 days to understand the effects of microgravity on biofilm morphology and growth. In general, microgravity did not induce changes in the shape of biofilms, nor did it affect growth in terms of biomass, thickness, and surface area coverage. However, microgravity increased or decreased biofilm formation in some cases, and this was incubation-time- and material-dependent. Nanograss was the material with significantly less biofilm formation, both in microgravity and on Earth, and it could potentially be interfering with hyphal adhesion and/or spore germination. Additionally, a decrease in biofilm formation at 20 days, potentially due to nutrient depletion, was seen in some space and Earth samples and was material-dependent.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3