Estimating the Pan Evaporation in Northwest China by Coupling CatBoost with Bat Algorithm

Author:

Dong Liming,Zeng WenzhiORCID,Wu Lifeng,Lei Guoqing,Chen HaoruiORCID,Srivastava Amit KumarORCID,Gaiser ThomasORCID

Abstract

Accurate estimation of pan evaporation (Ep) is vital for the development of water resources and agricultural water management, especially in arid and semi-arid regions where it is restricted to set up the facilities and measure pan evaporation accurately and consistently. Besides, using pan evaporation estimating models and pan coefficient (kp) models is a classic method to assess the reference evapotranspiration (ET0) which is indispensable to crop growth, irrigation scheduling, and economic assessment. This study estimated the potential of a novel hybrid machine learning model Coupling Bat algorithm (Bat) and Gradient boosting with categorical features support (CatBoost) for estimating daily pan evaporation in arid and semi-arid regions of northwest China. Two other commonly used algorithms including random forest (RF) and original CatBoost (CB) were also applied for comparison. The daily meteorological data for 12 years (2006–2017) from 45 weather stations in arid and semi-arid areas of China, including minimum and maximum air temperature (Tmin, Tmax), relative humidity (RH), wind speed (U), and global solar radiation (Rs), were utilized to feed the three models for exploring the ability in predicting pan evaporation. The results revealed that the new developed Bat-CB model (RMSE = 0.859–2.227 mm·d−1; MAE = 0.540–1.328 mm·d−1; NSE = 0.625–0.894; MAPE = 0.162–0.328) was superior to RF and CB. In addition, CB (RMSE = 0.897–2.754 mm·d−1; MAE = 0.531–1.77 mm·d−1; NSE = 0.147–0.869; MAPE = 0.161–0.421) slightly outperformed RF (RMSE = 1.005–3.604 mm·d−1; MAE = 0.644–2.479 mm·d−1; NSE = −1.242–0.894; MAPE = 0.176–0.686) which had poor ability to operate the erratic changes of pan evaporation. Furthermore, the improvement of Bat-CB was presented more comprehensively and obviously in the seasonal and spatial performance compared to CB and RF. Overall, Bat-CB has high accuracy, robust stability, and huge potential for Ep estimation in arid and semi-arid regions of northwest China and the applications of findings in this study have equal significance for adjacent countries.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3