Changing Water Levels in Lake Superior, MI (USA) Impact Periphytic Diatom Assemblages in the Keweenaw Peninsula

Author:

Woller-Skar M. Megan,Locher Alexandra,Audia EllenORCID,Thomas Evan W.

Abstract

Predicted climate-induced changes in the Great Lakes include increased variability in water levels, which may shift periphyton habitat. Our goal was to determine the impacts of water level changes in Lake Superior on the periphyton community assemblages in the Keweenaw Peninsula with different surface geology. At three sites, we identified periphyton assemblages as a function of depth, determined surface area of periphyton habitat using high resolution bathymetry, and estimated the impact of water level changes in Lake Superior on periphyton habitat. Our results suggest that substrate geology influences periphyton community assemblages in the Keweenaw Peninsula. Using predicted changes in water levels, we found that a decrease in levels of 0.63 m resulted in a loss of available surface area for periphyton habitat by 600 to 3000 m2 per 100 m of shoreline with slopes ranging 2 to 9°. If water levels rise, the surface area of substrate will increase by 150 to 370 m2 per 100 m of shoreline, as the slopes above the lake levels are steeper (8–20°). Since periphyton communities vary per site, changes in the surface area of the substrate will likely result in a shift in species composition, which could alter the structure of aquatic food webs and ecological processes.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference44 articles.

1. Great Lakes Integrated Sciences and Assessments (GLISA). Annual Climate Trends and Impacts Summary for the Great Lakes Basinhttp://glisa.umich.edu/resources/annual-climate-summary

2. Great Lakes Water Level Datahttps://www.lre.usace.army.mil/Missions/Great-Lakes-Information/Great-Lakes-Information-2/Water-Level-Data/

3. Effects of Temperature and Other Factors on Summer Phosphorus in the Inner Bay of Quinte, Lake Ontario: Implications for Climate Warming

4. Effects of climate change on the distribution of invasive alien species in Canada: a knowledge synthesis of range change projections in a warming world

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3