Damage Model and Numerical Experiment of High-Voltage Electro Pulse Boring in Granite

Author:

Li Changping,Duan Longchen,Tan SongchengORCID,Chikhotkin Victor,Fu Wenpeng

Abstract

High-voltage electro pulse boring (EPB) has the advantages of high rock-breaking efficiency and good wall quality, and is a new and efficient potential method of rock breaking. The EPB process is defined as random because it is affected by many factors. At present, there is no suitable physical and mathematical model to describe the process and results of rock breakage in EPB, and the conclusions reached regarding rock-breakage mechanisms are not uniform. In this study, a complete damage model of high voltage EPB in granite is established, which includes a shock wave model and a damage model of high voltage EPB in granite. The damage model is based on the Particle Flow Code two-dimensional program. Use of a damage model of EPB accommodates the complete process of high voltage EPB, from discharge to production of a shock wave, and so rock-breaking via electro pulse can be simulated and calculated. The time-varying waveforms of shock waves with different electrical parameters are simulated and calculated on the basis of the model. Different shock wave forms are loaded into the surface and internal rock in the damage geometric model of EPB granite. Then, the breakage process of the rock surface and internally, and the mechanism of rock breakage using EPB are analyzed. This study provides a scientific basis for the quantitative expression and prediction of rock fragmentation in EPB in order to improve the drilling efficiency and reduction of energy loss in the process of EPB.

Funder

National Natural Science Foundation of China

the Innovation Fund of Petro-China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference40 articles.

1. Synthesizing Comment on Efficient Rock Fragmentation Method in Frontier Drilling Technology;Yan;Oil Field Equip.,2012

2. Performance Study of Hybrid Magnetic Coupler Based on Magneto Thermal Coupled Analysis

3. Electro-pulse-boring (EPB): Novel super-deep drilling technology for low cost electricity

4. Dynamic fragmentation of rock by high-voltage pulses;Cho;Am. Rock Mech. Assoc.,2006

5. Breakdown and destruction of heterogeneous solid dielectrics by high voltage pulses

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3