Author:
Zhang Delong,Li Jianlin,Liu Xueqin,Guo Jianbo,Xu Shaohua
Abstract
Energy storage technologies have been rapidly evolving in recent years. Energy storage plays different roles in various scenarios. For electricity consumers, they are concerned with how to use the energy storage system (ESS) to reduce their costs of electricity or increase their profits. In this paper, a stochastic optimization method for energy storage sizing based on an expected value model for consumers with Photovoltaic Generation (PV) is proposed. Firstly, the Gaussian mixture model clustering method is used to cluster the historical load and PV data and calculate the probability of each cluster. Secondly, the optimal model of total system profit is established. Finally, according to the expected value model, the optimal ESS power and capacity are determined. Two case studies are used to demonstrate the calculation of optimal ESS capacity. The results obtained by the method proposed in this paper are compared with the results produced by the deterministic method. Through the analysis and comparison, the validity and superiority of the method proposed in this paper are verified. The profits obtained by the method proposed in this paper are 0.87% to 127.16% more than the deterministic method.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献