Abstract
Dissolved gas analysis (DGA) of transformer oil is considered to be the utmost reliable condition monitoring technique currently used to detect incipient faults within power transformers. While the measurement accuracy has become relatively high since the development of various off-line and on-line measuring sensors, interpretation techniques of DGA results still depend on the level of personnel expertise more than analytical formulation. Therefore, various interpretation techniques may lead to different conclusions for the same oil sample. Moreover, ratio-based interpretation techniques may fail in interpreting DGA data in case of multiple fault conditions and when the oil sample comprises insignificant amount of the gases used in the specified ratios. This paper introduces an improved approach to overcome the limitations of conventional DGA interpretation techniques, automate and standardize the DGA interpretation process. The approach is built based on incorporating all conventional DGA interpretation techniques in one expert system to identify the fault type in a more consistent and reliable way. Gene Expression Programming is employed to establish this expert system. Results show that the proposed approach provides more reliable results than using individual conventional methods that are currently adopted by industry practice worldwide.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference38 articles.
1. A review of dissolved gas analysis measurement and interpretation techniques
2. Guide for Diagnostic Field Testing of Electric Power Apparatus—Part 1, Oil-Filled Power Transformers, Regulators, and Reactors,1995
3. A new method to detect dissolved gases in transformer oil using NIR-IR spectroscopy
4. Facilities, Illustrations, Standards and Techniques; Transformer Maintenanc,2000
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献