Improved Consistent Interpretation Approach of Fault Type within Power Transformers Using Dissolved Gas Analysis and Gene Expression Programming

Author:

Abu-Siada Ahmed

Abstract

Dissolved gas analysis (DGA) of transformer oil is considered to be the utmost reliable condition monitoring technique currently used to detect incipient faults within power transformers. While the measurement accuracy has become relatively high since the development of various off-line and on-line measuring sensors, interpretation techniques of DGA results still depend on the level of personnel expertise more than analytical formulation. Therefore, various interpretation techniques may lead to different conclusions for the same oil sample. Moreover, ratio-based interpretation techniques may fail in interpreting DGA data in case of multiple fault conditions and when the oil sample comprises insignificant amount of the gases used in the specified ratios. This paper introduces an improved approach to overcome the limitations of conventional DGA interpretation techniques, automate and standardize the DGA interpretation process. The approach is built based on incorporating all conventional DGA interpretation techniques in one expert system to identify the fault type in a more consistent and reliable way. Gene Expression Programming is employed to establish this expert system. Results show that the proposed approach provides more reliable results than using individual conventional methods that are currently adopted by industry practice worldwide.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. A review of dissolved gas analysis measurement and interpretation techniques

2. Guide for Diagnostic Field Testing of Electric Power Apparatus—Part 1, Oil-Filled Power Transformers, Regulators, and Reactors,1995

3. A new method to detect dissolved gases in transformer oil using NIR-IR spectroscopy

4. Facilities, Illustrations, Standards and Techniques; Transformer Maintenanc,2000

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3