Experimental Study and Mechanism Analysis of the Effect of Oil Viscosity and Asphaltene on Foamy Oil

Author:

Wang Zhuangzhuang,Li Zhaomin,Lu Teng

Abstract

Foamy oil is considered an important reason for the anomalous performance in depletion development for some heavy oil reservoirs, but its influence factors remain to be fully investigated. In order to determine the effect of oil viscosity and asphaltene on foamy oil, ten oil samples including two types (deasphalted oil and asphaltenic oil) and five viscosities were used in the work. On this basis, depletion experiments were conducted in a sandpack and microscopic visualization model. Then, viscoelastic moduli of the oil–gas interface were measured to analyze the mechanisms of viscosity and asphaltene of foamy oil from the perspective of interfacial viscoelasticity. Results show that, with the decrease of the oil viscosity, the foamy oil performance in depletion development worsened, including a rapider decline in average pressure, earlier appearance of gas channeling, shorter period of foamy oil, and lower contribution of foamy oil to recovery. Asphaltene had an influence on foamy oil only in the viscosity range between 870 mPa∙s and 2270 mPa∙s for this study. The effect of viscosity and asphaltene on foamy oil can be explained by the viscoelasticity of bubble film. With the increase of oil viscosity, the interfacial viscous modulus increases significantly, indicating the bubble film becomes stronger and more rigid. Asphaltene, like armor on the bubble film, can improve the viscoelastic modulus, especially at lower viscosity. This can inhibit the coalescence of micro-bubbles and increase the possibility of splitting. This work identifies the effects of oil viscosity and asphaltene on foamy oil systematically and provides theoretical support for foamy oil production.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference39 articles.

1. Foamy oil flow and its role in heavy oil production;Maini;AIP Conf. Proc.,2010

2. Insights Into Non-Thermal Recovery of Heavy Oil

3. Development actualities and characteristics of the Orinoco heavy oil belt, Venezuela;Mu;Pet. Explor. Dev.,2010

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3