Abstract
The present research was developed to find out the effect of heated cylinder configurations in accordance with the magnetic field on the natural convective flow within a square cavity. In the cavity, four types of configurations—left bottom heated cylinder (LBC), right bottom heated cylinder (RBC), left top heated cylinder (LTC) and right top heated cylinder (RTC)—were considered in the investigation. The current mathematical problem was formulated using the non-linear governing equations and then solved by engaging the process of Galerkin weighted residuals based on the finite element scheme (FES). The investigation of the present problem was conducted using numerous parameters: the Rayleigh number (Ra = 103–105), the Hartmann number (Ha = 0–200) at Pr = 0.71 on the flow field, thermal pattern and the variation of heat inside the enclosure. The clarifications of the numerical result were exhibited in the form of streamlines, isotherms, velocity profiles and temperature profiles, local and mean Nusselt number, along with heated cylinder configurations. From the obtained outcomes, it was observed that the rate of heat transport, as well as the local Nusselt number, decreased for the LBC and LTC configurations, but increased for the RBC and RTC configurations with the increase of the Hartmann number within the square cavity. In addition, the mean Nusselt number for the LBC, RBC, LTC and RTC configurations increased when the Hartmann number was absent, but decreased when the Hartmann number increased in the cavity. The computational results were verified in relation to a published work and were found to be in good agreement.
Subject
Applied Mathematics,Computational Mathematics,General Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献