Combined Effect of the Microstructure and Mechanical Behavior of Lateritic Soils in the Instability of a Road Cut Slope in Rwanda

Author:

Valentino Roberto1ORCID,Pizzati Mattia1ORCID,Mizero Jules2

Affiliation:

1. Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 157/A, 43124 Parma, Italy

2. College of Science and Technology, University of Rwanda, Kigali P.O. Box 3900, Rwanda

Abstract

A very common hazard in Rwanda is represented by the instability of steep road cut slopes in lateritic soil. In its natural state, this material appears as a fine-grained weak and altered rock, generally in unsaturated conditions. Steep cut slopes made by this material could remain stable for a long time unless weathering weakens its mechanical behavior and heavy rainfall provokes a rapid landslide. This paper presents the results of an experimental investigation on the microstructural, petrophysical, and geotechnical properties of lateritic soil from a road cut slope located in Kabaya (Ngororero District—Rwanda), which was recently subjected to a landslide. The mechanical properties of the material are strictly related to the geological origin and history of the deposits, their formation environment, and weathering processes. These characteristics were revealed by peculiar microstructural features (micro-texture, porosity, and degree of alteration of original mineral paragenesis). The experimental investigations included identification and classification tests, direct shear tests on saturated samples, and swelling tests. This multidisciplinary approach provided insights into the relationship between geotechnical properties and the microstructural, petrophysical, and chemical characteristics of the altered rocks. This study showed how different levels of chemical alteration operated by weathering processes, in conjunction with brittle deformation related to the tectonic history, formed in the same site two shallow rock layers with similar macro-scale features and mechanical behaviors but markedly different microstructural and chemical properties. The innovative aspect of this research suggests an integrated multidisciplinary approach to considering microstructural aspects in addition to mechanical behavior in the slope stability analyses in lateritic soil. In particular, this study demonstrates the importance of such an approach since the failure mechanism is better explained if it is based on microstructural observations instead of considering the soil shear strength parameters only. This research helped to explain the formation of the landslide failure mechanism in a specific road cut slope, which could be assumed as representative of many other similar slopes subjected to landslides in Rwanda.

Funder

“Departments of Excellence” program of the Italian Ministry for University and Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3