Modelling and Validation of the Derna Dam Break Event

Author:

Annunziato Alessandro1,Santini Marzia2,Proietti Chiara3,de Girolamo Ludovica4,Lorini Valerio2ORCID,Gerhardinger Andrea3,Tucci Michele3

Affiliation:

1. Independent Researcher, 21020 Taino, VA, Italy

2. Joint Research Centre of the European Commission, 21027 Ispra, VA, Italy

3. FINCONS SPA, 20871 Vimercate, MB, Italy

4. Seidor Italy SRL, 20129 Milano, MI, Italy

Abstract

The catastrophic failure of two dams in Libya on 10 and 11 September 2023 resulted in the devastating flooding of the city of Derna, which is located downstream of the dams, causing more than 6000 fatalities and displacing thousands of residents. The failure was attributed to heavy rainfall from Storm Daniel, leading to the dams reaching full capacity and subsequently overflowing and failing. This paper presents an analysis of the dam break, including the modelling of flow discharge and the resulting flooding of Derna. For validation purposes, this study compares the modelled quantities with post-event satellite imagery from UNOSAT and Copernicus, local reports, and data collected from social media using AI detection. The findings provide valuable insights into the dynamics of the dam break and its initial parameters, as well as an assessment of the accuracy of the results. The analysis is performed using a rapid estimation technique developed by JRC to provide the international emergency community with a swift overview of the impact and damage assessment of potential or actual dam break events. The use of all available data shows a satisfactory comparison with the calculated quantities. The rapid modelling of dam break events and combined analysis of multiple data types are proven suitable for promptly assessing the expected dynamic of the event, as well as reconstructing the unknown initial conditions before the break. Incorporating sensitivity analyses provides an estimate of the uncertainties associated with the deduced values of the unknown parameters and their relative importance in the analysis.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3