Landslide Risks to Bridges in Valleys in North Carolina

Author:

Lin Sophia1,Chen Shen-En1,Tang Wenwu2,Chavan Vidya1,Shanmugam Navanit1ORCID,Allan Craig2,Diemer John2

Affiliation:

1. Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

2. Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

Abstract

This research delves into the intricate dynamics of landslides, emphasizing their consequences on transportation infrastructure, specifically highways and roadway bridges in North Carolina. Based on a prior investigation of bridges in Puerto Rico after Hurricane Maria, we found that bridges above water and situated in valleys can be exposed to both landslide and flooding risks. These bridges faced heightened vulnerability to combined landslides and flooding events due to their low depth on the water surface and the potential for raised flood heights due to upstream landslides. Leveraging a dataset spanning more than a century and inclusive of landslide and bridge information, we employed logistic regression (LR) and random forest (RF) models to predict landslide susceptibility in North Carolina. The study considered conditioning factors such as elevation, aspect, slope, rainfall, distance to faults, and distance to rivers, yielding LR and RF models with accuracy rates of 76.3% and 82.7%, respectively. To establish that a bridge’s location is at the bottom of a valley, data including landform, slope, and elevation difference near the bridge location were combined to delineate a bridge in a valley. The difference between bridge height and the lowest river elevation is established as an assumed flooding potential (AFP), which is then used to quantify the flooding risk. Compared to traditional flood risk values, the AFP, reported in elevation differences, is more straightforward and helps bridge engineers visualize the flood risk to a bridge. Specifically, a bridge (NCDOT ID: 740002) is found susceptible to both landslide (92%) and flooding (AFT of 6.61 m) risks and has been validated by field investigation, which is currently being retrofitted by North Carolina DOT with slope reinforcements (soil nailing and grouting). This paper is the first report evaluating the multi-hazard issue of bridges in valleys. The resulting high-fidelity risk map for North Carolina can help bridge engineers in proactive maintenance planning. Future endeavors will extend the analysis to incorporate actual flooding risk susceptibility analysis, thus enhancing our understanding of multi-hazard impacts and guiding resilient mitigation strategies for transportation infrastructure.

Funder

North Carolina Department of Transportation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3