Global Landslide Finder: Detecting the Time and Place of Landslides with Dense Earth Observation Time Series

Author:

Aufaristama Muhammad1ORCID,Werff Harald van der1ORCID,Botha Andries E. J.1ORCID,Meijde Mark van der1ORCID

Affiliation:

1. Department of Applied Earth Sciences, Faculty for Geo-Information Science and Earth Observation (ITC), University of Twente, Hallenweg 8, 7522 NH Enschede, The Netherlands

Abstract

This paper presents a remote sensing approach for rapidly and automatically generating maps of surface disturbances caused by landslides on the global scale. Our approach not only identifies the locations of these disturbances but also pinpoints the estimated time of their occurrence. Using the Continuous Change Detection and Classification (CCDC) algorithm within the Google Earth Engine (GEE) platform, we analyzed two decades of Landsat 5, 7, and 8 surface reflectance data. We tested this approach in five landslide-prone regions: Iburi (Japan), Kashmir (Pakistan), Karnataka (India), Porgera (Papua New Guinea), and Pasang Lhamu (Nepal). The results were promising, with R2 values ranging up to 0.85, indicating a robust correlation between detected disturbances and actual landslide events compared to manually made inventories. The accuracy metrics further validated our method, with a producer’s accuracy of 75%, a user’s accuracy of 73%, and an F1 score of 75%. Furthermore, the method proved well transferable across different locations. These findings demonstrate the method’s potential as a valuable tool for near real-time and historical analysis of landslide activity, thereby contributing to global disaster management and mitigation efforts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3