Addressing the Effect of Intra-Seasonal Variations in Developing Rainfall Thresholds for Landslides: An Antecedent Rainfall-Based Approach

Author:

Vishnu Chakrapani Lekha1ORCID,Oommen Thomas2ORCID,Chatterjee Snehamoy1ORCID,Sajinkumar Kochappi Sathyan3ORCID

Affiliation:

1. Department of Geology and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA

2. Department of Geology and Geological Engineering, University of Mississippi, University, Oxford, MS 38677, USA

3. Department of Geology, University of Kerala, Thiruvananthapuram 695581, India

Abstract

We developed a rainfall threshold model with the objective of limiting the effects of uncertainties typically associated with them, such as a lack of robust landslide database, the selection of the contributing rain gauge, seasonal variations in rainfall patterns, and the effect of extreme rainfall conditions. With the aid of gauge-corrected satellite precipitation data and a landslide database compiled from various sources, separate rainfall thresholds were developed for two waves of the monsoon season in the Western Ghats, India. The daily vs. antecedent rainfall distributions for different scenarios of antecedent rainfall were analyzed for landslide occurrence. The different scenarios considered included 1, 2, 3, 5, 10-, 20-, 30- and 40-day antecedent rainfalls along with the monsoon antecedent defined as the cumulative rainfall from the start of the monsoon to the day prior to landslide occurrence, and the event antecedent defined as the cumulative rainfall from the start of a rainfall event to the day prior to landslide occurrence. A statistically defined critical value was used to define the thresholds for extreme rainfall conditions, while ordinary least squares and quantile regression models were compared to identify the best-fit model for the non-extreme rainfall threshold. Receiver Operating Characteristic (ROC) analysis was performed on all these models and the best model was chosen based on the efficiency values. The daily vs. monsoon antecedent threshold was the best model for the first monsoon wave, and the daily vs. event antecedent model was the best model for the second monsoon wave. A separate rainfall threshold was defined for the entire monsoon without subdivision into separate waves, and corresponding ROC statistics were compared with the former approach to analyze the efficacy of intra-seasonal variations in rainfall threshold development. The results suggest that cumulative rainfall makes a significant contribution towards landslide initiation and that intra-seasonal variations should be necessarily considered in rainfall threshold modeling.

Funder

Society of Exploration Geophysicists (SEG) Geoscientists Without Borders

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3