Sensor-Based Solid Waste Handling Systems: A Survey

Author:

Vishnu S.,Ramson S. R. JinoORCID,Rukmini M. S. S.,Abu-Mahfouz Adnan M.ORCID

Abstract

As a consequence of swiftly growing populations in the urban areas, larger quantities of solid waste also form rapidly. Since urban local bodies are found to be unable to manage this perilous situation effectively, there is a high probability of risks relative to the environment and public health. A sudden change is indispensable in the existing systems that are developed for the collection, transportation, and disposal of solid waste, which are entangled in turmoil. However, Smart sensors and wireless technology enable cyber-physical systems to automate solid waste management, which will revolutionize the industry. This work presents a comprehensive study on the evolution of automation approaches in solid waste management systems. This study is enhanced by dissecting the available literature in solid waste management with Radio Frequency Identification (RFID), Wireless Sensor Networks (WSN), and Internet of Things (IoT)-based approaches and analyzing each category with a typical architecture, respectively. In addition, various communication technologies adopted in the aforementioned categories are critically analyzed to identify the best choice for the deployment of trash bins. From the survey, it is inferred that IoT-based systems are superior to other design approaches, and LoRaWAN is identified as the preferred communication protocol for the automation of solid waste handling systems in urban areas. Furthermore, the critical open research issues on state-of-the-art solid waste handling systems are identified and future directions to address the same topic are suggested.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A sustainable smart IoT-based solid waste management system;Future Generation Computer Systems;2024-08

2. Efficient Hospital Waste Treatment and Management Through IoT and Bioelectronics;Advances in Environmental Engineering and Green Technologies;2024-06-14

3. A Waste Detection and Separation System Based on Image Recognition and Embedded Artificial Intelligence;Proceedings of the International Workshop on Artificial Intelligence for Signal, Image Processing and Multimedia;2024-06-10

4. Sensors for Waste Management;Advances in Environmental Engineering and Green Technologies;2024-05-23

5. A waste separation system based on sensor technology and deep learning: A simple approach applied to a case study of plastic packaging waste;Journal of Cleaner Production;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3