Robust Multi-Scenario Speech-Based Emotion Recognition System

Author:

Zhu-Zhou FangfangORCID,Gil-Pita RobertoORCID,García-Gómez JoaquínORCID,Rosa-Zurera ManuelORCID

Abstract

Every human being experiences emotions daily, e.g., joy, sadness, fear, anger. These might be revealed through speech—words are often accompanied by our emotional states when we talk. Different acoustic emotional databases are freely available for solving the Emotional Speech Recognition (ESR) task. Unfortunately, many of them were generated under non-real-world conditions, i.e., actors played emotions, and recorded emotions were under fictitious circumstances where noise is non-existent. Another weakness in the design of emotion recognition systems is the scarcity of enough patterns in the available databases, causing generalization problems and leading to overfitting. This paper examines how different recording environmental elements impact system performance using a simple logistic regression algorithm. Specifically, we conducted experiments simulating different scenarios, using different levels of Gaussian white noise, real-world noise, and reverberation. The results from this research show a performance deterioration in all scenarios, increasing the error probability from 25.57% to 79.13% in the worst case. Additionally, a virtual enlargement method and a robust multi-scenario speech-based emotion recognition system are proposed. Our system’s average error probability of 34.57% is comparable to the best-case scenario with 31.55%. The findings support the prediction that simulated emotional speech databases do not offer sufficient closeness to real scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3