Synthesis and Performance Evaluation of Alginate-Coated Temperature-Sensitive Polymer Gel Microspheres

Author:

Song Zhaozheng123,Hu Junhang123,Liu Ping12,Sun Yili4

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China

2. Research and Development Center for the Sustainable Development of Continental Sandstone Mature Oilfield by National Energy Administration, Beijing 102206, China

3. College of Science, China University of Petroleum (Beijing), Beijing 102249, China

4. Oil and Gas Development Management Department, Sinopec Henan Oilfield Branch, Nanyang 473132, China

Abstract

With the long-term water-flooding development of the reservoir, the non-homogeneity of the formation is increasing and the reservoir environment is deteriorating; the microspheres used for deep plugging have shown disadvantages, such as poor temperature and salt resistance and faster expansion. In this study, a polymeric microsphere was synthesized that is resistant to high temperature and high salt and can achieve slow expansion and slow release for deep migration. P(AA-AM-SA)@TiO2 polymer gel/inorganic nanoparticle microspheres were prepared by reversed-phase microemulsion polymerization using acrylamide (AM) and acrylic acid (AA) as monomers, 3-methacryloxypropyltrimethoxysilane (KH-570)-modified TiO2 as the inorganic core, and sodium alginate (SA) as a temperature-sensitive coating material. Through single-factor analysis of the polymerization process, the optimal synthesis conditions were determined as follows: the oil(Cyclohexane)-water volume ratio was 8:5, the emulsifier mass ratio (Span-80:Tween-80) was 3:1 (10 wt% of the total system amount), the stirring speed was 400 r/min, the reaction temperature was 60 °C, and the initiator (ammonium persulfate and sodium bisulfite) dosage was 0.6 wt%. The size of the dried polymer gel/inorganic nanoparticle microspheres prepared by the optimized synthesis conditions was 10~40 μm with uniform particle size. The observation of P(AA-AM-SA)@TiO2 microspheres reveals that the Ca elements are uniformly distributed on the microspheres, and FT-IR indicates that the synthesized product is the target product. TGA shows that the polymer gel/inorganic nanoparticle microspheres have better thermal stability after the addition of TiO2, with a larger mass loss at 390 °C, which can adapt to the medium-high permeability reservoir environment. The thermal and aqueous salinity resistance of the P(AA-AM-SA)@TiO2 microspheres was tested, and the cracking temperature of P(AA-AM-SA)@TiO2 microsphere temperature-sensitive material was 90 °C. It still has favorable water absorption and swelling performance under the sodium salt concentration of 2.5 × 104 mg/L and can tolerate calcium salt up to 2.0 × 104 mg/L. Plugging Performance Test results show that the microspheres have good injectability between the permeability of 1.23 and 2.35 μm2 and good plugging effect near the permeability of 2.20 μm2. At high temperature and high salinity, P(AA-AM-SA)@TiO2 microspheres have a remarkable effect on profile control and water shutoff, the plugging rate reaches 95.3%, and the oil recovery rate is increased by 12.89% compared with water flooding, achieving the effect of slow swelling and slow release.

Funder

Research and Development Center for the Sustainable Development of Continental Sandstone Mature Oilfield by National Energy Administration

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3