Optimization of Potential Nanoemulgels for Boosting Transdermal Glimepiride Delivery and Upgrading Its Anti-Diabetic Activity

Author:

Abdallah Marwa H.12ORCID,Abu Lila Amr S.12ORCID,El-Nahas Hanan M.2ORCID,Ibrahim Tarek M.2ORCID

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Hail 81442, Saudi Arabia

2. Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt

Abstract

Transdermal drug delivery has been widely adopted as a plausible alternative to the oral route of administration, especially for drugs with poor systemic bioavailability. The objective of this study was to design and validate a nanoemulsion (NE) system for transdermal administration of the oral hypoglycemic drug glimepiride (GM). The NEs were prepared using peppermint/bergamot oils as the oil phase and tween 80/transcutol P as the surfactant/co-surfactant mixture (Smix). The formulations were characterized using various parameters such as globule size, zeta potential, surface morphology, in vitro drug release, drug-excipient compatibility studies, and thermodynamic stability. The optimized NE formulation was then incorporated into different gel bases and examined for gel strength, pH, viscosity, and spreadability. The selected drug-loaded nanoemulgel formulation was then screened for ex vivo permeation, skin irritation, and in vivo pharmacokinetics. Characterization studies revealed the spherical shape of NE droplets with an average size of ~80 nm and a zeta potential of −11.8 mV, which indicated good electrokinetic stability of NE. In vitro release studies revealed enhanced drug release from the NE formulation compared to the plain drug. GM-loaded nanoemulgel showed a 7-fold increment in drug transdermal flux compared to plain drug gel. In addition, the GM-loaded nanoemulgel formulation did not elicit any signs of inflammation and/or irritation on the applied skin, suggesting its safety. Most importantly, the in vivo pharmacokinetic study emphasized the potential of nanoemulgel formulation to potentiate the systemic bioavailability of GM, as manifested by a 10-fold rise in the relative bioavailability compared to control gel. Collectively, transdermal NE-based GM gel might represent a promising alternative to oral therapy in the management of diabetes.

Funder

Deputy for Research and Innovation, Ministry of Education

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3