Tracking Co-Occurrence of N501Y, P681R, and Other Key Mutations in SARS-CoV-2 Spike for Surveillance

Author:

Lee CarolORCID,Mangalaganesh Shruthi,Wilson Laurence O. W.,Kuiper Michael J.,Drew Trevor W.ORCID,Vasan Seshadri S.ORCID

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced five variants of concern (VOC) to date. The important spike mutation ‘N501Y’ is common to Alpha, Beta, Gamma, and Omicron VOC, while the ‘P681R’ is key to Delta’s spread. We have analysed circa 10 million SARS-CoV-2 genome sequences from the world’s largest repository, ‘Global Initiative on Sharing All Influenza Data (GISAID)’, and demonstrated that these two mutations have co-occurred on the spike ‘D614G’ mutation background at least 5767 times from 12 May 2020 to 28 April 2022. In contrast, the Y501-H681 combination, which is common to Alpha and Omicron VOC, is present in circa 1.1 million entries. Over half of the 5767 co-occurrences were in France, Turkey, or US (East Coast), and the rest across 88 other countries; 36.1%, 3.9%, and 4.1% of the co-occurrences were Alpha’s Q.4, Gamma’s P.1.8, and Omicron’s BA.1.1 sub-lineages acquiring the P681R; 4.6% and 3.0% were Delta’s AY.5.7 sub-lineage and B.1.617.2 lineage acquiring the N501Y; the remaining 8.2% were in other variants. Despite the selective advantages individually conferred by N501Y and P681R, the Y501-R681 combination counterintuitively did not outcompete other variants in every instance we have examined. While this is a relief to worldwide public health efforts, in vitro and in vivo studies are urgently required in the absence of a strong in silico explanation for this phenomenon. This study demonstrates a pipeline to analyse combinations of key mutations from public domain information in a systematic manner and provide early warnings of spread. The study here demonstrates the usage of the pipeline using the key mutations N501Y, P681R, and D614G of SARS-CoV-2.

Funder

United States Food and Drug Administration

National Health and Medical Research Council

Australian Academy of Science

Department of Industry, Science, Energy and Resources

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3