CFRWD-GAN for SAR-to-Optical Image Translation

Author:

Wei Juan1,Zou Huanxin1ORCID,Sun Li1,Cao Xu1,He Shitian1,Liu Shuo1,Zhang Yuqing1

Affiliation:

1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

Synthetic aperture radar (SAR) images have been extensively used in earthquake monitoring, resource survey, agricultural forecasting, etc. However, it is a challenge to interpret SAR images with severe speckle noise and geometric deformation due to the nature of radar imaging. The translation of SAR-to-optical images provides new support for the interpretation of SAR images. Most of the existing translation networks, which are based on generative adversarial networks (GANs), are vulnerable to part information loss during the feature reasoning stage, making the outline of the translated images blurred and semantic information missing. Aiming to solve these problems, cross-fusion reasoning and wavelet decomposition GAN (CFRWD-GAN) is proposed to preserve structural details and enhance high-frequency band information. Specifically, the cross-fusion reasoning (CFR) structure is proposed to preserve high-resolution, detailed features and low-resolution semantic features in the whole process of feature reasoning. Moreover, the discrete wavelet decomposition (WD) method is adopted to handle the speckle noise in SAR images and achieve the translation of high-frequency components. Finally, the WD branch is integrated with the CFR branch through an adaptive parameter learning method to translate SAR images to optical ones. Extensive experiments conducted on two publicly available datasets, QXS-SAROPT and SEN1-2, demonstrate a better translation performance of the proposed CFRWD-GAN compared to five other state-of-the-art models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3