Low-Cost Object Detection Models for Traffic Control Devices through Domain Adaption of Geographical Regions

Author:

Oh Dahyun1,Kang Kyubyung2ORCID,Seo Sungchul1,Xiao Jinwu2ORCID,Jang Kyochul3ORCID,Kim Kibum4ORCID,Park Hyungkeun1,Won Jeonghun5ORCID

Affiliation:

1. Department of Civil Engineering, Chungbuk National University, Cheongju-si 28644, Republic of Korea

2. School of Construction Management Technology, Purdue University, West Lafayette, IN 47907, USA

3. Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA

4. Division of Construction Engineering and Management, Purdue University, West Lafayette, IN 47907, USA

5. Department of Safety Engineering, Chungbuk National University, Cheongju-si 28644, Republic of Korea

Abstract

Automated inspection systems utilizing computer vision technology are effective in managing traffic control devices (TCDs); however, they face challenges due to the limited availability of training datasets and the difficulty in generating new datasets. To address this, our study establishes a benchmark for cost-effective model training methods that achieve the desired accuracy using data from related domains and YOLOv5, a one-stage object detector known for its high accuracy and speed. In this study, three model cases were developed using distinct training approaches: (1) training with COCO-based pre-trained weights, (2) training with pre-trained weights from the source domain, and (3) training with a synthesized dataset mixed with source and target domains. Upon comparing these model cases, this study found that directly applying source domain data to the target domain is unfeasible, and a small amount of target domain data is necessary for optimal performance. A model trained with fine-tuning-based domain adaptation using pre-trained weights from the source domain and minimal target data, proved to be the most resource-efficient approach. These results contribute valuable guidance for practitioners aiming to develop TCD models with limited data, enabling them to build optimal models while conserving resources.

Funder

Chungbuk National University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3