Dynamic Water Quality Changes in the Main Stream of the Yangtze River from Multi-Source Remote Sensing Data

Author:

Zhao Jiarui12,Jin Shuanggen234ORCID,Zhang Yuanyuan3ORCID

Affiliation:

1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China

2. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

3. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

Total nitrogen (TN) and total phosphorus (TP) are important indicators of water quality. Although water quality can be obtained with high accuracy using traditional measurement methods, the cost is high and the area is limited. In the past a single-satellite remote sensing system was normally used to estimate water quality at a large scale, while bands were fewer with limited accuracy. In this paper, inversion models for TN and TP are obtained and validated in the main stream of the Yangtze River using multi-source remote sensing data. The joint inversion models for TN and TP have higher accuracy (R2=0.81 and 0.86, RMSE=0.51 and 0.10 mg L−1) than the single-satellite inversion models (R2=0.61−0.62 and 0.59−0.75, RMSE=0.41−0.61 and 0.07−0.12 mg L−1). Using these models, water quality changes in the Yangtze River are obtained from 2019 to 2021. It is found that TN and TP in the upstream and downstream are high. In spring and autumn, the water quality is poor. The water quality in the Yangtze River is mostly Class III with improvement. Furthermore, it is found that TN and TP are negatively correlated with the water level, temperature and flow in Jiujiang. The p value between water quality and the water level is higher than for other factors, with −0.76 and −0.64 for TN and TP, respectively.

Funder

Strategic Priority Research Program Project of the Chinese Academy of Sciences

Jiangsu Natural Resources Development Special Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3