Estimation of Bamboo Forest Aboveground Carbon Using the RGLM Model Based on Object-Based Multiscale Segmentation of SPOT-6 Imagery

Author:

Lv Yulong1,Han Ning234,Du Huaqiang234ORCID

Affiliation:

1. Anji Forestry Bureau, Anji 313300, China

2. School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou 311300, China

3. State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China

4. Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China

Abstract

Remote sensing is an important tool for the quantitative estimation of forest carbon stock. This study presents a multiscale, object-based method for the estimation of aboveground carbon stock in Moso bamboo forests. The method differs from conventional pixel-based approaches and is more suitable for Chinese forest management inventory. This research indicates that the construction of a SPOT-6 multiscale hierarchy with the 30 scale as the optimal segmentation scale achieves accurate information extraction for Moso bamboo forests. The producer’s and user’s accuracy are 88.89% and 86.96%, respectively. A random generalized linear model (RGLM), constructed using the multiscale hierarchy, can accurately estimate carbon storage of the bamboo forest in the study area, with a fitting and test accuracy (R2) of 0.74 and 0.64, respectively. In contrast, pixel-based methods using the RGLM model have a fitting and prediction accuracy of 0.24 and 0.01, respectively; thus, the object-based RGLM is a major improvement. The multiscale object hierarchy correctly analyzed the multiscale correlation and responses of bamboo forest elements to carbon storage. Objects at the 30 scale responded to the microstructure of the bamboo forest and had the strongest correlation between estimated carbon storage and measured values. Objects at the 60 scale did not directly inherit the forest information, so the response to the measured carbon storage of the bamboo forest was the smallest. Objects at the 90 scale serve as super-objects containing the forest feature information and have a significant correlation with the measured carbon storage. Therefore, in this study, a carbon storage estimation model was constructed based on the multiscale characteristics of the bamboo forest so as to analyze correlations and greatly improve the fitting and prediction accuracy of carbon storage.

Funder

Leading Goose Project of Science Technology Department of Zhejiang Province

National Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3