How Do Ground Litter and Canopy Regulate Surface Runoff?—A Paired-Plot Investigation after 80 Years of Broadleaf Forest Regeneration

Author:

Nainar AnandORCID,Kishimoto Koju,Takahashi Koichi,Gomyo Mie,Kuraji KoichiroORCID

Abstract

Relatively minimal attention has been given to the hydrology of natural broadleaf forests compared to conifer plantations in Japan. We investigated the impacts of ground litter removal and forest clearing on surface runoff using the paired runoff plot approach. Plot A (7.4 m2) was maintained as a control while plot B (8.1 m2) was manipulated. Surface runoff was measured by a tipping-bucket recorder, and rainfall by a tipping-bucket rain gauge. From May 2016 to July 2019, 20, 54, and 42 runoff events were recorded in the no-treatment (NT), litter removed before clearcutting (LRBC), and after clearcutting (AC) phases, respectively. Surface runoff increased 4× when moving from the NT to LRBC phase, and 4.4× when moving from the LRBC to AC phase. Antecedent precipitation index (API11) had a significant influence on surface runoff in the LRBC phase but not in the NT and AC phases. Surface runoff in the AC phase was high regardless of API11. The rainfall required for initiating surface runoff is 38% and 56% less when moving from the NT to LRBC, and LRBC to AC phases, respectively. Ground litter and canopy function to reduce surface runoff in regenerated broadleaf forests.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference59 articles.

1. World Deforestation Slows Down as More Forests Are Better Managed http://www.fao.org/news/story/en/item/326911/icode/

2. https://www.forestry.jp/publish/ForSci/BackNo/sk59/59.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3