MoTI: A Multi-Stage Algorithm for Moving Object Identification in SLAM

Author:

Hu Changqing1,Liu Manlu12,Zhang Su3,Xie Yu1,Tan Liguo4

Affiliation:

1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China

2. Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China

3. School of Traffic Transportation Engineering, Central South University, Changsha 410000, China

4. Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China

Abstract

Simultaneous localization and mapping (SLAM) algorithms are widely applied in fields such as autonomous driving and target tracking. However, the effect of moving objects on localization and mapping remains a challenge in natural dynamic scenarios. To overcome this challenge, this paper proposes an algorithm for dynamic point cloud detection that fuses laser and visual identification data, the multi-stage moving object identification algorithm (MoTI). The MoTI algorithm consists of two stages: rough processing and precise processing. In the rough processing stage, a statistical method is employed to preliminarily detect dynamic points based on the range image error of the point cloud. In the precise processing stage, the radius search strategy is used to statistically test the nearest neighbor points. Next, visual identification information and point cloud registration results are fused using a method of statistics and information weighting to construct a probability model for identifying whether a point cloud cluster originates from a moving object. The algorithm is integrated into the front-end of the LOAM system, which significantly improves the localization accuracy. The MoTI algorithm is evaluated on an actual indoor dynamic environment and several KITTI datasets, and the results demonstrate its ability to accurately detect dynamic targets in the background and improve the localization accuracy of the robot.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on AGV composition algorithm based on variable and complex environment;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-05-16

2. Research on Navigation Recognition Optimization of Unmanned Self-Built Map;2023 2nd International Conference on Artificial Intelligence and Intelligent Information Processing (AIIIP);2023-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3