Constraint-Aware Federated Scheduling for Data Center Workloads

Author:

Thiyyakat Meghana1ORCID,Kalambur Subramaniam1,Sitaram Dinkar2

Affiliation:

1. Department of Computer Science and Engineering, PES University, Bangalore 560093, India

2. Cloud Computing Innovation Council of India, Bangalore 560093, India

Abstract

The use of data centers is ubiquitous, as they support multiple technologies across domains for storing, processing, and disseminating data. IoT applications utilize both cloud data centers and edge data centers based on the nature of the workload. Due to the stringent latency requirements of IoT applications, the workloads are run on hardware accelerators such as FPGAs and GPUs for faster execution. The introduction of such hardware alongside existing variations in the hardware and software configurations of the machines in the data center, increases the heterogeneity of the infrastructure. Optimal job performance necessitates the satisfaction of task placement constraints. This is accomplished through constraint-aware scheduling, where tasks are scheduled on worker nodes with appropriate machine configurations. The presence of placement constraints limits the number of suitable resources available to run a task, leading to queuing delays. As federated schedulers have gained prominence for their speed and scalability, we assess the performance of two such schedulers, Megha and Pigeon, within a constraint-aware context. We extend our previous work on Megha by comparing its performance with a constraint-aware version of the state-of-the-art federated scheduler Pigeon, PigeonC. The results of our experiments with synthetic and real-world cluster traces show that Megha reduces the 99th percentile of job response time delays by a factor of 10 when compared to PigeonC. We also describe enhancements made to Megha’s architecture to improve its scheduling efficiency.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3